7,321 research outputs found

    Percolation Transition in the Heterogeneous Vortex State in NbSe2

    Full text link
    A percolation transition in the vortex state of a superconducting 2H-NbSe2 crystal is observed in the regime where vortices form a heterogeneous phase consisting of ordered and disordered domains. The transition is signaled by a sharp increase in critical current that occurs when the volume fraction of disordered domains, obtained from pulsed measurements of the current-voltage characteristics, reaches the value Pc= 0.26. Measurements on different vortex states show that while the temperature of the transition depends on history and measurement speed, the value of Pc and the critical exponent characterizing the approach to it, r =1.97 ±\pm 0.66, are universal

    Dynamical polarization, screening, and plasmons in gapped graphene

    Full text link
    The one-loop polarization function of graphene has been calculated at zero temperature for arbitrary wavevector, frequency, chemical potential (doping), and band gap. The result is expressed in terms of elementary functions and is used to find the dispersion of the plasmon mode and the static screening within the random phase approximation. At long wavelengths the usual square root behaviour of plasmon spectra for two-dimensional (2D) systems is obtained. The presence of a small (compared to a chemical potential) gap leads to the appearance of a new undamped plasmon mode. At greater values of the gap this mode merges with the long-wavelength one, and vanishes when the Fermi level enters the gap. The screening of charged impurities at large distances differs from that in gapless graphene by slower decay of Friedel oscillations (1/r21/r^2 instead of 1/r31/r^3), similarly to conventional 2D systems.Comment: 8 pages, 8 figures, v2: to match published versio

    Fractional Quantum Hall Effect in Suspended Graphene: Transport Coefficients and Electron Interaction Strength

    Full text link
    Strongly correlated electron liquids which occur in quantizing magnetic fields reveal a cornucopia of fascinating quantum phenomena such as fractionally charged quasiparticles, anyonic statistics, topological order, and many others. Probing these effects in GaAs-based systems, where electron interactions are relatively weak, requires sub-kelvin temperatures and record-high electron mobilities, rendering some of the most interesting states too fragile and difficult to access. This prompted a quest for new high-mobility systems with stronger electron interactions. Recently, fractional-quantized Hall effect was observed in suspended graphene (SG), a free-standing monolayer of carbon, where it was found to persist up to T=10 K. The best results in those experiments were obtained on micron-size flakes, on which only two-terminal transport measurements could be performed. Here we pose and solve the problem of extracting transport coefficients of a fractional quantum Hall state from the two-terminal conductance. We develop a method, based on the conformal invariance of two-dimensional magnetotransport, and illustrate its use by analyzing the measurements on SG. From the temperature dependence of longitudinal conductivity, extracted from the measured two-terminal conductance, we estimate the energy gap of quasiparticle excitations in the fractional-quantized nu=1/3 state. The gap is found to be significantly larger than in GaAs-based structures, signaling much stronger electron interactions in suspended graphene. Our approach provides a new tool for the studies of quantum transport in suspended graphene and other nanoscale systems

    Quasi-Particle Spectra, Charge-Density-Wave, Superconductivity and Electron-Phonon Coupling in 2H-NbSe2

    Full text link
    High-resolution photoemission has been used to study the electronic structure of the charge density wave (CDW) and superconducting (SC) dichalcogenide, 2H- NbSe2. From the extracted self-energies, important components of the quasiparticle (QP) interactions have been identified. In contrast to previously studied TaSe2, the CDW transition does not affect the electronic properties significantly. The electron-phonon coupling is identified as a dominant contribution to the QP self-energy and is shown to be very anisotropic (k-dependent) and much stronger than in TaSe2.Comment: 4 pages, 3 figures, minor changes, to appear in PR

    Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex

    Get PDF
    Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function

    Polarization change due to fast winds from accretion disks

    Get PDF
    A fraction of the radiation produced by an accretion disk may be Thomson scattered by a wind flowing away from the disk. Employing a simple plane-parallel model of the wind, we calculate the polarization of the scattered radiation and find that its sign depends on the wind velocity, beta=v/c. In the case, 0.12 < beta < 0.78, the polarization is parallel to the disk normal, i.e., it is orthogonal to the standard Chandrasekhar's polarization expected from accretion disks. The velocity of an electron-positron wind is likely to saturate near the equilibrium value beta_* of order 0.5 for which the accelerating radiation pressure is balanced by the Compton drag. Then the change of polarization by the wind is most pronounced. This may help to reconcile the standard accretion disk model with the optical polarimetric observations of non-blazar AGNs.Comment: accepted for publication in ApJ Letter

    Multiple breast cancer risk variants are associated with differential transcript isoform expression in tumors.

    Get PDF
    Genome-wide association studies have identified over 70 single-nucleotide polymorphisms (SNPs) associated with breast cancer. A subset of these SNPs are associated with quantitative expression of nearby genes, but the functional effects of the majority remain unknown. We hypothesized that some risk SNPs may regulate alternative splicing. Using RNA-sequencing data from breast tumors and germline genotypes from The Cancer Genome Atlas, we tested the association between each risk SNP genotype and exon-, exon-exon junction- or transcript-specific expression of nearby genes. Six SNPs were associated with differential transcript expression of seven nearby genes at FDR &lt; 0.05 (BABAM1, DCLRE1B/PHTF1, PEX14, RAD51L1, SRGAP2D and STXBP4). We next developed a Bayesian approach to evaluate, for each SNP, the overlap between the signal of association with breast cancer and the signal of association with alternative splicing. At one locus (SRGAP2D), this method eliminated the possibility that the breast cancer risk and the alternate splicing event were due to the same causal SNP. Lastly, at two loci, we identified the likely causal SNP for the alternative splicing event, and at one, functionally validated the effect of that SNP on alternative splicing using a minigene reporter assay. Our results suggest that the regulation of differential transcript isoform expression is the functional mechanism of some breast cancer risk SNPs and that we can use these associations to identify causal SNPs, target genes and the specific transcripts that may mediate breast cancer risk
    • …
    corecore